广西铜价格联盟

高一数学知识点——立体几何初步

高一家长服务 2019-01-15 17:45:16

立体几何初步

1.1.1 构成空间几何体的基本元素柱

1.1.2 棱、棱锥和棱台的结构特征

1.1.3 圆柱、圆锥和圆台的结构特征

1.1.4 投影与直观图

1.1.5 三视图

1.1.6 棱柱、棱锥和棱台的表面积

1.1.7 柱、锥和台的体积

棱柱表面积A=L*H+2*S,体积V=S*H 
(L--底面周长,H--柱高,S--底面面积) 
圆柱表面积A=L*H+2*S=2π*R*H+2π*R^2,体积V=S*H=π*R^2*H 
(L--底面周长,H--柱高,S--底面面积,R--底面圆半径) 
球体表面积A=4π*R^2,体积V=4/3π*R^3 
(R-球体半径) 
圆锥表面积A=1/2*s*L+π*R^2,体积V=1/3*S*H=1/3π*R^2*H 
(s--圆锥母线长,L--底面周长,R--底面圆半径,H--圆锥高) 
棱锥表面积A=1/2*s*L+S,体积V=1/3*S*H 
(s--侧面三角形的高,L--底面周长,S--底面面积,H--棱锥高)

长方形的周长=(长+宽)×2                       正方形 a—边长 C=4a 
S=a2 长方形 a和b-边长 C=2(
a+b) 
S=ab 三角形 a,b,c-三边长 h-a边上的高 
s-周长的一半 A,B,C-内角 其中
s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹 S=dD/2·sinα 
平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 
菱形 a-边长 α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 
a2sinα 梯形 a和b-上、下底长 h-高 
m-中位线长 S=(a+b)h/2 =mh d-直径 C=πd=2πr 
S=πr2 =πd2/4 扇形 r—扇形半径 正方形的周长=边长×4 长方形的面积=长×宽 
正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 
梯形的面积=(上底+下底)×高÷2
 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 
长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 
圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 
圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 
的体积=底面积×高 平面图形 名称 符号 周长C和面积S a—圆心角度数 
C=2r+2πr×(a/360) S=πr2×(a/360) 
弓形 l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] -(r-h)(2rh-h2)1/2 
παr2/360 - b/2·[r2
-(b/2)2]1/2 
r(l-b)/2 + bh/2 
≈2bh/3 圆环 R-外圆半径 r-内圆半径 D-外圆直径 d-内圆直径 S=π(R2-r2) 
π(D2-d2)/4 椭圆 D-长轴 d-短轴 S=πDd/4 
立方图形 名称 符号 面积S和体积V 正方体 a-边长 S=6a2 V=a3 
长方体 a-长 b-宽 c-高 S=2(ab+ac+bc) 
V=abc 棱柱 S-底面积 h-高 V=Sh 棱锥 S-底面积 
h-高 V=Sh/3 棱台 S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S1)1/2]/3

拟柱体 S1-上底面积 S2-下底面积 
S0-中截面积 h-高 V=h(S1+S2+4S0)/6 
圆柱 r-底半径 h-高 C—底面周长 
S底—底面
 S侧—侧面积 S表—表面积 C=2πr S底=πr2 
S侧=Ch S表=Ch+2S底 V=S底h =πr2h 
空心圆柱 R-外圆半径 r-内圆半径 
h-高 V=πh(R2-r2) 直圆锥 r-底半径 h-高 V=πr2h/3 
圆台 r-上底半径 R-下底半径 
h-高 V=πh(R2+Rr+r2)/3 球 r-半径 
d-直径 V=4/3πr3=πd2/6 球缺 h-球缺高 r-球半径 
a-球缺底半径 V=πh(3a2+h2)/6 =πh2(3r-h)/3 a2=h(2r-h) 球台 r1和r2-球台上、下底半径 
h-高 V=πh[3(r12+r22)+h2]/6 圆环体
 R-环体半径 
D-环体直径 r-环体截面半径 d-环体截面直径 V=2π2Rr2 =π2Dd2/4 
桶状体 D-桶腹直径 d-桶底直径 h-桶高 V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) 
V=
πh(2D2+Dd+3d2/4)/15 
(母线是抛物线形)

三视图的投影规则是:
主视、俯视 长对正
主视、左
 高平齐 
左视、俯视 宽相等

 

点线面位置关系

公理一:如果一条线上的两个点在平面上则该线在平面 
公理二:如果两个平面有一个公共点则它们有一条公共直线且所有的公共点都在这条直线上 
公理三:三个不共线的点确定一个平面 
推论一:直线及直线外一点确定一个平面 
推论二:两相交直线确定一个平面 
推论三:两平行直线确定一个平面 
公理四:和同一条直线平行的直线平行 
异面直线定义:不平行也不相交的两条直线 
判定定理:经过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线。 
等角定理:如果一个角的两边和另一个角的两边分别平行,且方向相同,那么这两个角相等

 

线线平行→线面平行 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 
线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条
直线就和交线平行。 
线
面平行→面面平行 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 
面面平行→线线平行 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 
线线垂直→线面垂直 如果一条直线和一个平面内的两条相交
直线垂直,那么这条直线垂直于这个平面。 
线面垂直→线线平行 如果连条直线同时垂直于一个平面,那么这两条直线平行。 
线面垂直→面面垂直 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 
线面垂直→线线垂直 线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。 
面面垂直→线面垂直 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。 
三垂线定理 如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。

例题

对于四面体ABCD,(1)若AB=AC,BD=CD如何证明BC垂直于AD?(2)若AB垂直于CD,BD垂直于AC,如何证明BC垂直于AD?

证明:

(1).取BC的中点F,连结AF,DF,则 
∵AB=AC,BD=CD, 
∴△ABC与△DBC是等腰三角形, 
AF⊥BC,DF⊥BC.而AF∩DF=F, 
∴BC⊥AFD.又AD在平面AFD内, 
∴BC 
(2).设A在面BCD上的射影为O.连结BO,CO,DO.则 
∵CD⊥AB,CD⊥AO,AB∩AO=A,∴CD⊥ABO. 
BO在平面ABO内,∴BO⊥CD. 
同理,DO⊥BC.因此,O是△BCD的垂心,因此有 
CO⊥BD. 
∵BD⊥CO,BD⊥AO,CO∩AO=O,∴BD⊥AOC. 
AC在平面AOC内,∴BD⊥AC.




关于公众号



永远清楚,这条教育的路上不只你一个人在努力

每天给你需要的教育信息!

关注高一家长服务↓↓(长按三秒)


Copyright © 广西铜价格联盟@2017